Différences
Ci-dessous, les différences entre deux révisions de la page.
| Les deux révisions précédentes Révision précédente Prochaine révision | Révision précédente | ||
| fr:projet_historical_facts_analyzer [2015/06/05 08:57] – fraggle | fr:projet_historical_facts_analyzer [2021/12/27 18:23] (Version actuelle) – modification externe 127.0.0.1 | ||
|---|---|---|---|
| Ligne 5: | Ligne 5: | ||
| Let's define the finite set of historical facts $ \mathcal{F} = \{f_{1}, | Let's define the finite set of historical facts $ \mathcal{F} = \{f_{1}, | ||
| - | $ \forall i \in \{1, | + | $$ | 
| + | \forall i \in \{1, | ||
| \begin{array}{lrcl}  | \begin{array}{lrcl}  | ||
| h: & \mathcal{F} & \longrightarrow & \{0,1\} \\ | h: & \mathcal{F} & \longrightarrow & \{0,1\} \\ | ||
| Ligne 13: | Ligne 13: | ||
|                                                                                1 & \quad if\, |                                                                                1 & \quad if\, | ||
|                                                               |                                                               | ||
| - | \right | + |                                                         \right  | 
| - | \end{array} $ | + | \end{array}  | 
| - | The set $ \mathcal{F} $ is mean to be a complete set of all facts that might happen or not. The $ h $ function is only here to cope with the complexity associated to build a reduction of the list of facts to simple logical fact that only exist or not in the history line we want to model.   | + | The set $ \mathcal{F} $ is meant to be a complete set of all facts that might happen or not. The $ h $ function is only here to cope with the complexity associated to build a reduction of the list of facts to simple logical fact that only exist or not in the history line we want to model.   | 
| In order to build facts dependencies, | In order to build facts dependencies, | ||
| - | \begin{array}{lrcl} | + | $$ \begin{array}{lrcl} | 
| - | p: & \mathcal{F} \ times \mathcal{F} & \longrightarrow & \[0,1\] \\ | + | p: & \mathcal{F} \times \mathcal{F} & \longrightarrow & [0,1] \\ | 
| - | & f_{i} & \stackrel{h}{\longmapsto} & h(f_{i}) = \left\{ | + |        &  | 
| - |                                                               | + | \end{array}  | 
| - |                                                                                1 & \quad if\, | + | |
| - | \end{array} | + | that capture the dependency probability that $ f_{j} $ has in regard to $ f_{i} $.     | 
| - |                                                          | + | |
| - | \end{array} $ | + | |
| - |    | + | |