en:cs:k-nn_multiple_imputation

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
en:cs:k-nn_multiple_imputation [2024/04/27 09:41] – [Definitions] fraggleen:cs:k-nn_multiple_imputation [2024/05/04 22:33] (Version actuelle) – [Definitions] fraggle
Ligne 2: Ligne 2:
    
   * $A$ and $B$ two sets, $g: A \longrightarrow B$ a function:   * $A$ and $B$ two sets, $g: A \longrightarrow B$ a function:
 +    * $g$ is injective $\iff \forall x, y \in A, f(x) =_{B} f(y) \implies x =_{A} y$
 +    * $g$ is surjective $\iff \forall y \in B, \exists x \in A, y =_{B} f(x)$ 
 +    * $g$ is bijective $\iff g$ is injective and  surjective $\iff \forall y \in B, \exists! x \in A, y =_{B} f(x) \iff \exists g^{-1}: B \longrightarrow A, g \circ g^{-1} = id_A \land g^{-1} \circ g = id_B$
     * Subset $g$ image : $A^{\prime} \subset A, g(A^{\prime}) = \{g(x) \in B| \, x \in A^{\prime}\} \subset B$     * Subset $g$ image : $A^{\prime} \subset A, g(A^{\prime}) = \{g(x) \in B| \, x \in A^{\prime}\} \subset B$
     * Subset inverse $g$ image: $B^{\prime} \subset B, g^{-1}(B^{\prime}) = \{x \in A| \, g(x) \in B^{\prime}\} \subset A$     * Subset inverse $g$ image: $B^{\prime} \subset B, g^{-1}(B^{\prime}) = \{x \in A| \, g(x) \in B^{\prime}\} \subset A$
-    * $g$ is injective $\iff \forall x, y \in A, f(x) =_{B} f(y) \implies x =_{A} y$ +   
-    * $g$ is surjective $\iff \forall y \in B, \exists x \in A, y =_{B} f(x)$  +
-    * $g$ is bijective $\iff g$ is injective and  surjective $\iff \forall y \in B, \exists! x \in A, y =_{B} f(x)$+
  
   * For a given $d \in \mathbb{N}$, let's define the function $f$:   * For a given $d \in \mathbb{N}$, let's define the function $f$:
- 
 $$ \begin{array}{lrcl}  $$ \begin{array}{lrcl} 
    f: & \mathbb{R}^{d} & \longrightarrow & \mathbb{R}^{d} \\    f: & \mathbb{R}^{d} & \longrightarrow & \mathbb{R}^{d} \\
Ligne 18: Ligne 18:
 $f$ will be called the prediction function in subsequent sections. $f$ will be called the prediction function in subsequent sections.
  
-  * For a given normed space vector on corpse $K$ $(E, \|~\|_{E})$ and $X \in E$, let' define the binary relation $\le_{X}$:+  * For a given normed space vector on corpse $K$ $(E, \|~\|_{E})$ and $X \in E$, let' define the binary relation $\le_{X}$ (nearest neighborhood order):
  
-$$\forall X_{1} \in E \land \forall X_{2} \in E, X_{1} \le_{X} X_{2} \iff \|X - X_{1}\|_{E} \le_{K} \|X - X_{2}\|_{E}$$ (nearest neighborhood order)+$$\forall X_{1} \in E \land \forall X_{2} \in E, X_{1} \le_{X} X_{2} \iff \|X - X_{1}\|_{E} \le_{K} \|X - X_{2}\|_{E}$$
  
-  * For a given normed space vector on corpse $K$ $(E, \|~\|_{E})$ and $X \in E$, let' define the binary relation $=_{X}$:+  * For a given normed space vector on corpse $K$ $(E, \|~\|_{E})$ and $X \in E$, let' define the binary relation $=_{X}$ (nearest neighborhood equality):
  
-$$\forall X_{1} \in E \land \forall X_{2} \in E, X_{1} =_{X} X_{2} \iff \|X - X_{1}\|_{E} =_{K} \|X - X_{2}\|_{E}$$ (nearest neighborhood equality)+$$\forall X_{1} \in E \land \forall X_{2} \in E, X_{1} =_{X} X_{2} \iff \|X - X_{1}\|_{E} =_{K} \|X - X_{2}\|_{E}$$ 
  
 ====== k-NN multiple imputation ====== ====== k-NN multiple imputation ======
Ligne 43: Ligne 43:
 ===== k-NN ===== ===== k-NN =====
  
-For $X \in \mathbb{R}^{d}$, $(\mathcal{D}, \le_{X})$ is a fully ordered finite set+For $X \in \mathbb{R}^{d}$, $(\mathcal{D}, \le_{X})$ is a fully ordered finite set: $\mathcal{D} = \{X_{i} | \, \forall i \in \{2,\ldots,n\}, X_{i-1} \le_{X} X_{i} \}$ 
  
 For $k \in \{1,\ldots,n\}$, let's define:  For $k \in \{1,\ldots,n\}$, let's define: 
Ligne 64: Ligne 64:
   * Impute with the mean:    * Impute with the mean: 
 \[ \[
-Y^* = \frac{1}{k} (Y_{1} + \ldots + Y_{k})+Y^* = \frac{1}{k} \sum_{i=1}^{k} Y_{i}
 \] \]
  
  • en/cs/k-nn_multiple_imputation.1714203661.txt.gz
  • Dernière modification : il y a 3 semaines
  • de fraggle