Modelling multi-phased AC electrical system interconnexion
Quick and dirty mathematics background and rationale
We suppose that all the multi-phased electrical systems are properly balanced: ∀n∈{1,2};Iphn=Iphn+1∀n∈{1,2};Iphn=Iphn+1.
Let's call A=(pa,Va,Ia,Ipha)A=(pa,Va,Ia,Ipha) and B=(pb,Vb,Ib,Iphb)B=(pb,Vb,Ib,Iphb) two multi-phased electrical systems where pa,pb∈N are respectively the number of phases, Va,Vb∈N are the voltage per phase, Ia,Ib∈N are the total intensity and Ipha,Iphb∈N the intensity per phase.
The intensities properties can be deduced one from the other: Ia=pa×Ipha and Ib=pb×Iphb.
- A and B are interconnected serially : A◃▹B.
How to evaluate the properties of the resulting system A◃▹B?
A◃▹B=(p=min(pa,pb),VA◃▹B=min(Va,Vb),IA◃▹B=min(Ia,Ib),IphA◃▹B=min(Ipha,Iphb))
Let's say you only have Ia,Ib in A and B. We can deduce Ipha,Iphb from them.
How can we deduce IphA◃▹B?
IphA◃▹B=min(Ia,Ib)÷min(pa,pb)
Division evaluation:
- Ia<Ib∧pa<pb⇒Ia mod pa=0∧IphA◃▹B∈N ;
- Ia>Ib∧pa<pb∧pa,pb∈{2,3}∧Ib mod pa=0⇒IphA◃▹B∈N ;
- Ia>Ib∧pa>pb⇒Ib mod pb=0∧IphA◃▹B∈N;
- Ia>Ib∧pa<pb∧pa,pb∈{2,3}∧Ib mod pa=0⇒IphA◃▹B∈N ;
- Ia>Ib∧pa<pb∧pa,pb∈{2,3}∧Ib mod pa≠0⇒IphA◃▹B∉N ;
- Ia<Ib∧pa>pb∧pa,pb∈{2,3}∧Ia mod pb≠0⇒IphA◃▹B∉N ;
We can expose at least two cases where IphA◃▹B∉N if pa,pb∈{2,3}
Let's say you only have Ipha,Iphb in A and B. We can deduce Ia,Ib from them.
How can we deduce IA◃▹B?
IA◃▹B=min(pa,pb)×min(Ia,Ib)∈N
So if you model an AC electrical system with the properties (p,V,Iph), you can deduce the properties of any interconnexion of them within the natural integer set.
Star topology with balanced phases
I is the line current.
V is the line-to-neutral voltage.
U is the line-to-line voltage: U=√3×V.
I=p×IphPph=Vph×Iph×cos(φ)P=p∑n=1Pphn=p∑n=1Vphn×Iphn×cos(φ)=p×Vph×Iph×cos(φ)=Vph×I×cos(φ)Qph=Vph×Iph×sin(φ)Q=p∑n=1Qphn=p∑n=1Vphn×Iphn×sin(φ)=p×Vph×Iph×sin(φ)=Vph×I×sin(φ)Sph=Vph×IphS=p∑n=1Sphn=p∑n=1Vphn×Iphn=p×Vph×Iph=Vph×I
Delta topology with balanced phases
J is the phase current.
I is the line current: I=√3×J.
U is the line-to-line voltage.
J=p×JphPph=Uph×Jph×cos(φ)P=p∑n=1Pphn=p∑n=1Uphn×Jphn×cos(φ)=p×Uph×Jph×cos(φ)=Uph×J×cos(φ)Qph=Uph×Jph×sin(φ)Q=p∑n=1Qphn=p∑n=1Uphn×Jphn×sin(φ)=p×Uph×Jph×sin(φ)=Uph×J×sin(φ)Sph=Uph×JphS=p∑n=1Sphn=p∑n=1Uphn×Jphn=p×Uph×Jph=Uph×J
Typescript code sketches
Low level class of electrical helper methods implementation:
/** * Targeted to AC related values calculation. */ export class ACElectricUtils { static amperageTotal(nbOfPhases: number, Iph: number): number { return nbOfPhases * Iph; } static powerPerPhase(V: number, Iph: number, cosPhi = 1): number { const powerPerPhase = V * Iph * cosPhi; if (cosPhi === 1) { return powerPerPhase; } return Math.round(powerPerPhase); } static powerTotal(nbOfPhases: number, V: number, Iph: number, cosPhi = 1): number { return nbOfPhases * ACElectricUtils.powerPerPhase(V, Iph, cosPhi); } static amperageTotalFromPower(P: number, V: number, cosPhi = 1): number { const amperage = P / (V * cosPhi); if (cosPhi === 1 && P % V === 0) { return amperage; } return Math.round(amperage); } static amperagePerPhaseFromPower(nbOfPhases: number, P: number, V: number, cosPhi = 1): number { const amperage = ACElectricUtils.amperageTotalFromPower(P, V, cosPhi); const amperagePerPhase = amperage / nbOfPhases; if (amperage % nbOfPhases === 0) { return amperagePerPhase; } return Math.round(amperagePerPhase); } } /** * Targeted to DC related values calculation. */ export class DCElectricUtils { static power(V: number, I: number): number { return V * I; } static amperage(P: number, V: number): number { const amperage = P / V; if (P % V === 0) { return amperage; } return Math.round(amperage); } }
AC electrical component interface:
interface ElectricACComponent { nPhases: number; Iph: number; V: number; I?: number; P?: number; }
Electrical properties calculation of an electric car connected to a AC charging station implementation (the electrical properties of the connexion cable are always beyond):
const Car = { nPhases: 2, Iph: 18, V: 220, }; const ChargingStation = { nPhases: 3, Iph: 32, V: 230, }; function getCombinedElectricObject(Car, ChargingStation): ElectricACComponent { return { nPhases: Math.min(Car.nPhases, ChargingStation.nPhases), Iph: Math.min(Car.Iph, ChargingStation.Iph), V: Math.min(Car.V, ChargingStation.V), I: ACElectricUtils.amperageTotal(this.nPhases, this.Iph), P: ACElectricUtils.powerTotal(this.nPhases, this.Iph, this.V), }; }
And now for example you can define a fine grained OCPP charging profile with the following schedule for the electric car connected to the charging station that will include the number of phases used and the max intensity per phase:
const ChargingSchedulePeriod = { startPeriod: 60, limit: 15, // Sanity check: ensure the limit is below getCombinedElectricObject(Car, ChargingStation).Iph numberPhases: getCombinedElectricObject(Car, ChargingStation).nPhases, };
Modelling multi-phased AC/DC electrical system
AC modelling
See first section.
Rectifier modelling
DC modelling
Modelling multi-phased DC/AC electrical system
DC modelling
Inverter modelling
AC modelling
See first section.
References
Composants symétriques : https://fr.qwe.wiki/wiki/Symmetrical_components