en:cs:modelling_multi-phased_electrical_system_interconnexion

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
en:cs:modelling_multi-phased_electrical_system_interconnexion [2020/10/30 21:49] – [Typescript code sketches] fraggleen:cs:modelling_multi-phased_electrical_system_interconnexion [2024/04/18 20:39] (Version actuelle) – [Quick and dirty mathematics background and rationale] fraggle
Ligne 6: Ligne 6:
  
 Let's call $ A = (p_{a}, V_{a}, I_{a}, Iph_{a}) $ and $ B = (p_{b}, V_{b}, I_{b}, Iph_{b}) $ two multi-phased electrical systems where $ p_{a},p_{b} \in \mathbb{N} $ are respectively the number of phases, $ V_{a}, V_{b} \in \mathbb{N} $ are the voltage per phase, $ I_{a}, I_{b} \in \mathbb{N} $ are the total intensity and $ Iph_{a}, Iph_{b} \in \mathbb{N} $ the intensity per phase.\\  Let's call $ A = (p_{a}, V_{a}, I_{a}, Iph_{a}) $ and $ B = (p_{b}, V_{b}, I_{b}, Iph_{b}) $ two multi-phased electrical systems where $ p_{a},p_{b} \in \mathbb{N} $ are respectively the number of phases, $ V_{a}, V_{b} \in \mathbb{N} $ are the voltage per phase, $ I_{a}, I_{b} \in \mathbb{N} $ are the total intensity and $ Iph_{a}, Iph_{b} \in \mathbb{N} $ the intensity per phase.\\ 
-We always have: $ I_{a} = p_{a} \times Iph_{a} $ and $ I_{b} = p_{b} \times Iph_{b} $. So the intensities properties can be deduced one from the other+The intensities properties can be deduced one from the other: $ I_{a} = p_{a} \times Iph_{a} $ and $ I_{b} = p_{b} \times Iph_{b} $.
  
   * $ A $ and $ B $ are interconnected serially : $ A \triangleleft \triangleright B $.    * $ A $ and $ B $ are interconnected serially : $ A \triangleleft \triangleright B $. 
Ligne 22: Ligne 22:
   * $ I_{a} > I_{b} \land p_{a} < p_{b} \land p_{a}, p_{b} \in \{2,3\} \land I_{b} \ mod \ p_{a} \neq 0 \Rightarrow Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ ;   * $ I_{a} > I_{b} \land p_{a} < p_{b} \land p_{a}, p_{b} \in \{2,3\} \land I_{b} \ mod \ p_{a} \neq 0 \Rightarrow Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ ;
   * $ I_{a} < I_{b} \land p_{a} > p_{b} \land p_{a}, p_{b} \in \{2,3\} \land I_{a} \ mod \ p_{b} \ne 0 \Rightarrow Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ ;   * $ I_{a} < I_{b} \land p_{a} > p_{b} \land p_{a}, p_{b} \in \{2,3\} \land I_{a} \ mod \ p_{b} \ne 0 \Rightarrow Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ ;
-We can expose at leat two cases where $ Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ if $ p_{a}, p_{b} \in \{2,3\} $+We can expose at least two cases where $ Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ if $ p_{a}, p_{b} \in \{2,3\} $
  
 Let's say you only have $ Iph_{a}, Iph_{b} $ in $ A $ and $ B $. We can deduce $ I_{a}, I_{b} $ from them.\\  Let's say you only have $ Iph_{a}, Iph_{b} $ in $ A $ and $ B $. We can deduce $ I_{a}, I_{b} $ from them.\\ 
Ligne 66: Ligne 66:
  
 <code javascript> <code javascript>
-export class ElectricUtils +/** 
-  public static calculateAmpTotal(nbOfPhases: number, Iph: number): number {+ * Targeted to AC related values calculation. 
 + */ 
 +export class ACElectricUtils 
 +  static amperageTotal(nbOfPhases: number, Iph: number): number {
     return nbOfPhases * Iph;     return nbOfPhases * Iph;
   }   }
  
-  public static calculatePowerPerPhase(V: number, Iph: number, cosPhi = 1): number {+  static powerPerPhase(V: number, Iph: number, cosPhi = 1): number {
     const powerPerPhase = V * Iph * cosPhi;     const powerPerPhase = V * Iph * cosPhi;
     if (cosPhi === 1) {     if (cosPhi === 1) {
       return powerPerPhase;       return powerPerPhase;
     }     }
-    return Math.round(powerPerPhase + 1);+    return Math.round(powerPerPhase);
   }   }
  
-  public static calculatePowerTotal(nbOfPhases: number, V: number, Iph: number, cosPhi = 1): number { +  static powerTotal(nbOfPhases: number, V: number, Iph: number, cosPhi = 1): number { 
-    return nbOfPhases * ElectricUtils.calculatePowerPerPhase(V, Iph, cosPhi);+    return nbOfPhases * ACElectricUtils.powerPerPhase(V, Iph, cosPhi);
   }   }
  
-  public static calculateAmpPerPhaseFromPower(nbOfPhases: number, P: number, V: number, cosPhi = 1): number { +  static amperageTotalFromPower(P: number, V: number, cosPhi = 1): number { 
-    const power ElectricUtils.calculateAmpTotalFromPower(P, VcosPhi)+    const amperage P / (V cosPhi); 
-    const powerPerPhase = power / nbOfPhases+    if (cosPhi === 1 && P === 0) { 
-    if (power nbOfPhases === 0) { +      return amperage;
-      return powerPerPhase;+
     }     }
-    return Math.round(powerPerPhase + 1);+    return Math.round(amperage);
   }   }
  
-  public static calculateAmpTotalFromPower(P: number, V: number, cosPhi = 1): number { +  static amperagePerPhaseFromPower(nbOfPhases: number, P: number, V: number, cosPhi = 1): number { 
-    const power = P / (cosPhi); +    const amperage ACElectricUtils.amperageTotalFromPower(PVcosPhi)
-    if (cosPhi === 1 && P % V === 0) { +    const amperagePerPhase = amperage / nbOfPhases
-      return power;+    if (amperage % nbOfPhases === 0) { 
 +      return amperagePerPhase; 
 +    } 
 +    return Math.round(amperagePerPhase); 
 +  } 
 +
 + 
 +/** 
 + * Targeted to DC related values calculation. 
 + */ 
 +export class DCElectricUtils { 
 +  static power(V: number, I: number): number { 
 +    return V * I; 
 +  } 
 + 
 +  static amperage(P: number, V: number): number { 
 +    const amperage = P / V; 
 +    if (P % V === 0) { 
 +      return amperage;
     }     }
-    return Math.round(power + 1);+    return Math.round(amperage);
   }   }
 } }
Ligne 135: Ligne 155:
     Iph: Math.min(Car.Iph, ChargingStation.Iph),     Iph: Math.min(Car.Iph, ChargingStation.Iph),
     V: Math.min(Car.V, ChargingStation.V),     V: Math.min(Car.V, ChargingStation.V),
-    I: ElectricityUtils.calculateAmpTotal(this.nPhases, this.Iph), +    I: ACElectricUtils.amperageTotal(this.nPhases, this.Iph), 
-    P: ElectricityUtils.calculatePowerTotal(this.nPhases, this.Iph, this.V),+    P: ACElectricUtils.powerTotal(this.nPhases, this.Iph, this.V),
   };   };
 } }
Ligne 155: Ligne 175:
 ====== Modelling multi-phased AC/DC electrical system ====== ====== Modelling multi-phased AC/DC electrical system ======
  
 +===== AC modelling =====
 +See first section. 
 ===== Rectifier modelling ===== ===== Rectifier modelling =====
- 
 FIXME FIXME
 +===== DC modelling ===== 
 +FIXME
 ====== Modelling multi-phased DC/AC electrical system ====== ====== Modelling multi-phased DC/AC electrical system ======
  
 +===== DC modelling =====
 +FIXME
 ===== Inverter modelling ===== ===== Inverter modelling =====
- 
 FIXME FIXME
 +===== AC modelling ===== 
 +See first section.
 ====== References ====== ====== References ======
  
 Composants symétriques : https://fr.qwe.wiki/wiki/Symmetrical_components Composants symétriques : https://fr.qwe.wiki/wiki/Symmetrical_components
  • en/cs/modelling_multi-phased_electrical_system_interconnexion.1604090991.txt.gz
  • Dernière modification : il y a 2 ans
  • (modification externe)