Différences
Ci-dessous, les différences entre deux révisions de la page.
| Les deux révisions précédentes Révision précédente Prochaine révision | Révision précédente | ||
| en:cs:modelling_multi-phased_electrical_system_interconnexion [2021/04/12 09:34] – [Typescript code sketches] fraggle | en:cs:modelling_multi-phased_electrical_system_interconnexion [2024/04/18 20:39] (Version actuelle) – [Quick and dirty mathematics background and rationale] fraggle | ||
|---|---|---|---|
| Ligne 6: | Ligne 6: | ||
| Let's call $ A = (p_{a}, V_{a}, I_{a}, Iph_{a}) $ and $ B = (p_{b}, V_{b}, I_{b}, Iph_{b}) $ two multi-phased electrical systems where $ p_{a},p_{b} \in \mathbb{N} $ are respectively the number of phases, $ V_{a}, V_{b} \in \mathbb{N} $ are the voltage per phase, $ I_{a}, I_{b} \in \mathbb{N} $ are the total intensity and $ Iph_{a}, Iph_{b} \in \mathbb{N} $ the intensity per phase.\\ | Let's call $ A = (p_{a}, V_{a}, I_{a}, Iph_{a}) $ and $ B = (p_{b}, V_{b}, I_{b}, Iph_{b}) $ two multi-phased electrical systems where $ p_{a},p_{b} \in \mathbb{N} $ are respectively the number of phases, $ V_{a}, V_{b} \in \mathbb{N} $ are the voltage per phase, $ I_{a}, I_{b} \in \mathbb{N} $ are the total intensity and $ Iph_{a}, Iph_{b} \in \mathbb{N} $ the intensity per phase.\\ | ||
| - | We always have: $ I_{a} = p_{a} \times Iph_{a} $ and $ I_{b} = p_{b} \times Iph_{b} $. So the intensities properties can be deduced one from the other. | + | The intensities properties can be deduced one from the other: $ I_{a} = p_{a} \times Iph_{a} $ and $ I_{b} = p_{b} \times Iph_{b} $. |
| * $ A $ and $ B $ are interconnected serially : $ A \triangleleft \triangleright B $. | * $ A $ and $ B $ are interconnected serially : $ A \triangleleft \triangleright B $. | ||
| Ligne 22: | Ligne 22: | ||
| * $ I_{a} > I_{b} \land p_{a} < p_{b} \land p_{a}, p_{b} \in \{2,3\} \land I_{b} \ mod \ p_{a} \neq 0 \Rightarrow Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ ; | * $ I_{a} > I_{b} \land p_{a} < p_{b} \land p_{a}, p_{b} \in \{2,3\} \land I_{b} \ mod \ p_{a} \neq 0 \Rightarrow Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ ; | ||
| * $ I_{a} < I_{b} \land p_{a} > p_{b} \land p_{a}, p_{b} \in \{2,3\} \land I_{a} \ mod \ p_{b} \ne 0 \Rightarrow Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ ; | * $ I_{a} < I_{b} \land p_{a} > p_{b} \land p_{a}, p_{b} \in \{2,3\} \land I_{a} \ mod \ p_{b} \ne 0 \Rightarrow Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ ; | ||
| - | We can expose at leat two cases where $ Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ if $ p_{a}, p_{b} \in \{2,3\} $ | + | We can expose at least two cases where $ Iph_{A \triangleleft \triangleright B} \notin \mathbb{N} $ if $ p_{a}, p_{b} \in \{2,3\} $ |
| Let's say you only have $ Iph_{a}, Iph_{b} $ in $ A $ and $ B $. We can deduce $ I_{a}, I_{b} $ from them.\\ | Let's say you only have $ Iph_{a}, Iph_{b} $ in $ A $ and $ B $. We can deduce $ I_{a}, I_{b} $ from them.\\ | ||
| Ligne 69: | Ligne 69: | ||
| * Targeted to AC related values calculation. | * Targeted to AC related values calculation. | ||
| */ | */ | ||
| - | export | + | export class ACElectricUtils { |
| static amperageTotal(nbOfPhases: | static amperageTotal(nbOfPhases: | ||
| return nbOfPhases * Iph; | return nbOfPhases * Iph; | ||
| Ligne 155: | Ligne 155: | ||
| Iph: Math.min(Car.Iph, | Iph: Math.min(Car.Iph, | ||
| V: Math.min(Car.V, | V: Math.min(Car.V, | ||
| - | I: ACElectricityUtils.calculateAmpTotal(this.nPhases, | + | I: ACElectricUtils.amperageTotal(this.nPhases, |
| - | P: ACElectricityUtils.calculatePowerTotal(this.nPhases, | + | P: ACElectricUtils.powerTotal(this.nPhases, |
| }; | }; | ||
| } | } | ||